Python中的匿名函数
作者:快盘下载 人气:Python中的匿名函数
写python的时候,大多数场景下,我都是if else选手,因为最核心的逻辑几乎都是通过if else语句来实现的。关于匿名函数这块儿,其实可以用常见的循环等方法来实现,但是如果你想成为一个python的高手,匿名函数还是必须要了解的。因为匿名函数,能够让你的代码足够简洁,
01 什么是匿名函数?
在python中,匿名函数,顾名思义,就是没有名字的函数,它主要用在那些只使用一次的场景中。如果我们的程序中只需要调用一次某个简单逻辑,把它写成函数还需要先定义、取函数名字等一些列操作,这种场景下使用匿名函数往往能够让你的程序更加简单。
匿名函数还有名称,叫做lambda。匿名函数格式如下:
lambda arg1,arg2 ...,argN : expression
它常用格式是lambda关键字+逗号分隔的参数+冒号+表达式。
简单看个例子吧:
----计算一个数的平方--- >>> lambda x: x**2 <function <lambda> at 0x7f6ebe013a28> ---注意,这个是一个函数的地址--- >>> func=lambda x: x**2 >>> func(2) 4 >>> >>> func(3) 9
利用lambda,我们实现对一个数字x求平方的运算,在python中,**代表乘方操作。
上面的例子中,x就是参数,冒号后面的x**2就是expression表达式。
当然,我们也可以定义一个函数来实现乘方操作。
lambda区别于函数的一点在于,lambda是一个表达式,它不是一个函数,也不是一个语句。因此,lambda可以被用在一些特殊的地方,例如下面的场景:
我们可以用range函数来生成一个list,如下:
>>> a=[ range(10)] >>> a [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]
如果我们要对这些数字做乘方操作,则可以直接写成下面的样子:
>>> b=[(lambda x: x*x)(x) for x in range(10)] >>> b [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] ----如果用函数来实现,会发现报错--- >>> def fun(x): ... return x**2 ... >>> >>> c=[fun(range(10))] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<stdin>", line 2, in fun TypeError: unsupported operand type(s) for ** or pow(): 'list' and 'int'
当然,你也可以利用函数,使用另外的方法来实现这个过程如下:
>>> def fun2(x): ... return x**2 ... >>> c=[] >>> for i in range(10): ... c.append(fun2(i)) >>> c [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
相比于前面的lambda函数,这个方法显得不那么灵巧。
02 函数式编程
所谓的函数式编程,代表代码中每块都是不可变的,都是由函数构成的,函数本身相互独立,互不影响,相同的输入都对应相同的输出,函数式编程特性,和lambda有密切的关系。
来看下面的例子,假如我们想让一个list中的元素都乘以2,可以写成下面的形式:
>>> l=[1,2,3,4,5] >>> def double_num(l): ... for index in range(0, len(l)): ... l[index] *= 2 ... return l ... >>> double_num(l) [2, 4, 6, 8, 10] >>> l [2, 4, 6, 8, 10]
上面这段代码,就不是一个函数式编程的例子。
因为每次输入列表L,L的值都会被改变,如果我们多次调用double_num这个函数,每次的结果都不一样。
那么如果我们让它变成一个函数式编程,就得写成下面这样:
>>> l=[1,2,3,4,5] >>> def double_num1(l): ... new_list=[] ... for index in l: ... new_list.append(index*2) ... return new_list ... >>> double_num1(l) [2, 4, 6, 8, 10] >>> l [1, 2, 3, 4, 5]
在python中,提供了常用的几个函数map、filter、reduce同lambda一起使用,来实现函数式编程(注意,这3个函数需要在python3的环境下使用)。
map函数 map(function, list)
注意,这里的function可以是匿名函数,也可以是普通的函数。
还是上面的乘以2的例子,假如我们使用map函数配合lambda来实现,可以写成下面这样:
>>> l = [1, 2, 3, 4, 5] >>> new_list = map(lambda x: x * 2, l) >>> for i in new_list: ... print(i) ... 2 4 6 8 10
这里的lambda就可以用函数来替换,如下:
>>> l = [1, 2, 3, 4, 5] >>> def double_x(x): ... return x*2 >>> res=map(double_x, l) >>> for i in res: ... print(i) ... 2 4 6 8 10
filter函数 filter(function,list)
filter函数主要用来对可迭代的对象中的每个元素,都用function判断,将返回true的对象返回,返回false的对象抛弃,如下为判断一个集合中的偶数:
>>> l = [1, 2, 3, 4, 5] >>> new_l=filter(lambda x: x%2==0, l) >>> for i in new_l: ... print(i) ... 2 4
reduce函数 reduce(function, list)
reduce主要用来对一个列表做一些累计操作,假如我们要计算某个列表的累计乘积,可以用下面的方法:
>>> from functools import reduce >>> l = [1, 2, 3, 4, 5] >>> product = reduce(lambda x,y: x*y, l) >>> product 120
03 lambda的性能如何?
下面是一个例子,测试不同的方案下,使用lambda、for循环和新建list的方法,分别对一个集合元素乘以2,计算的耗时情况:
[root@VM-0-14-centos ~]# python3 -mtimeit -s'a=range(1000)' 'map(lambda x: x*2, a)' 1000000 loops, best of 3: 0.538 usec per loop [root@VM-0-14-centos ~]# python3 -mtimeit -s'a=range(1000)' '[x * 2 for x in a]' 10000 loops, best of 3: 122 usec per loop [root@VM-0-14-centos ~]# python3 -mtimeit -s'a=range(1000)' 'l = []' 'for i in a: l.append(i * 2)' 1000 loops, best of 3: 252 usec per loop
可以看到,使用map+lambda计算的时候,性能是更好的。map函数是由c语言写的,运行的时候不需要通过python解释器,并且内部做了很多优化,因此性能会更好。
加载全部内容